Energy - Aware Wireless Microsensor Networks
نویسندگان
چکیده
Self-configuring wireless sensor networks can be invaluable in many civil and military applications for collecting, processing, and disseminating wide ranges of complex environmental data. Because of this, they have attracted considerable research attention in the last few years. The WINS [1] and SmartDust [2] projects, for instance, aim to integrate sensing, computing, and wireless communication capabilities into a small form factor to enable low-cost production of these tiny nodes in large numbers. Several other groups are investigating efficient hardware/software system architectures, signal processing algorithms, and network protocols for wireless sensor networks [3]-[5]. Sensor nodes are battery driven and hence operate on an extremely frugal energy budget. Further, they must have a lifetime on the order of months to years, since battery replacement is not an option for networks with thousands of physically embedded nodes. In some cases, these networks may be required to operate solely on energy scavenged from the environment through seismic, photovoltaic, or thermal conversion. This transforms energy consumption into the most important factor that determines sensor node lifetime. Conventional low-power design techniques [6] and hardware architectures only provide point solutions which are insufficient for these highly energy-constrained systems. Energy optimization, in the case of sensor networks, is much more complex, since it involves not only reducing the energy consumption of a single sensor node but also maximizing the lifetime of an entire network. The network lifetime can be maximized
منابع مشابه
Design Considerations for Energy-Efficient Radios in Wireless Microsensor Networks
In the past few years, wireless microsensor networks have attracted a great deal of attention in the research community. This is due to the applications that will be enabled once wireless microsensor networks are in place. The design of wireless microsensor networks, however, represents a difficult challenge. Since many applications require fault-tolerant, long-term sensing, one important chall...
متن کاملENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کاملA JOINT DUTY CYCLE SCHEDULING AND ENERGY AWARE ROUTING APPROACH BASED ON EVOLUTIONARY GAME FOR WIRELESS SENSOR NETWORKS
Network throughput and energy conservation are two conflicting important performance metrics for wireless sensor networks. Since these two objectives are in conflict with each other, it is difficult to achieve them simultaneously. In this paper, a joint duty cycle scheduling and energy aware routing approach is proposed based on evolutionary game theory which is called DREG. Making a trade-off ...
متن کاملEIDA: An Energy-Intrusion aware Data Aggregation Technique for Wireless Sensor Networks
Energy consumption is considered as a critical issue in wireless sensor networks (WSNs). Batteries of sensor nodes have limited power supply which in turn limits services and applications that can be supported by them. An efcient solution to improve energy consumption and even trafc in WSNs is Data Aggregation (DA) that can reduce the number of transmissions. Two main challenges for DA are: (i)...
متن کاملLow-Power Wireless Sensor Networks
Wireless distributed microsensor systems will enable fault tolerant monitoring and control of a variety of applications. Due to the large number of microsensor nodes that may be deployed and the long required system lifetimes, replacing the battery is not an option. Sensor systems must utilize the minimal possible energy while operating over a wide range of operating scenarios. This paper prese...
متن کاملEnergy and quality scalable wireless communication
Nodes for emerging, high-density wireless networks will face the dual challenges of continuous, multi-year operation under diverse and challenging operating conditions. The wireless communication subsystem, a substantial consumer of energy, must therefore be designed with unprecedented energy efficiency. To meet this challenge, inefficiencies once overlooked must be addressed, and the system mu...
متن کامل